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AFIT-ENG-13-M-10
Abstract

Adversaries employ malware against victims of cyber espionage with the intent of

gaining unauthorized access to information. To that end, malware authors intentionally

attempt to evade defensive countermeasures based on static methods. This thesis analyzes

a dynamic analysis methodology for malware triage that applies at the enterprise scale.

This study captures behavior reports from 64,987 samples of malware randomly

selected from a large collection and 25,591 clean executable files from operating system

install media. Function call information in sequences of behavior generate feature vectors

from behavior reports from the files. The results of 64 experiment combinations indicate

that using more informed behavior features yields better performing models with this data

set. The decision tree classifier attained a max performance of 0.999 area under the ROC

curve and 99.4% accuracy using argument information with function sequence lengths

from 11–14.

This methodology contributes to strategic cyber situation awareness by fusion with

fast malware detection methods, such as static analysis, to change the game of malware

triage in favor of cyber defense. This method of triage reduces the number of false alarms

from automatic analysis that allows a 97% workload reduction over using a static method

alone.
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LEARNING ENTERPRISE MALWARE TRIAGE FROM AUTOMATIC DYNAMIC

ANALYSIS

I. Introduction

Malware plagues enterprise networks. Malware authors intentionally attempt to

evade defensive countermeasures. These adversaries employ malware against

victims of cyber espionage with the intent of gaining unauthorized access to information

or performing other malicious behavior such as corrupting data or denying access to

information. As long as it is possible to use malware to achieve gain, then adversaries

will attempt to introduce malware into enterprise cyber infrastructures (ECIs) [15].

Cyber defenders deploy a variety of responses to mitigate the threat of malware.

To counteract signature-based malware detection, such as antivirus products and static

analysis, malware authors implement a variety of obfuscation techniques that change

the digital “appearance” of malware while preserving malicious behavior [9, 28, 31].

Initial results indicate that a dynamic analysis of malware can reveal malware hidden to

static analysis by intentional obfuscation by observing the actual behavior of executable

files [21, 26]. Furthermore, a dynamic analysis approach is significantly different from a

static analysis approach such that one can refine the results of the other. That is, applying

a dynamic method to the results of a previous static method can reduce the false alarms of

both methods together for a more efficient malware detection system [6].

Manual review of large sets of dynamic analysis reports remains unfeasible because

an enterprise network contains hundreds of thousands of unique executable files. Malware

triage seeks to reduce the workload of the available cyber analysts by detecting the files

that most closely resemble malware.
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A given ECI contains executable files from a variety of sources. Operating systems

install some executable files at install time or during updates, and others reside as part of

an application that provides some set of features. Some applications directly support the

requirements of the users of the ECI, while other applications provide a variety of security

services, such as antivirus software, anti-spyware software or host-based intrusion detection

system software. Another source of executable files on ECIs is administrative programs

such as application installers or remote management software. Each application contains a

set of executable files that interact together to provide the service of the application. Thus,

each executable file behaves in a certain way, and there are a large variety of acceptable

behaviors present from executable files on a typical ECI.

Additionally, some ECIs contain malicious executable files that provide a service to

unauthorized users. Adversaries specifically program such executable files to perform

malicious behaviors and covertly introduce them to the ECI. Examples include remote

control of resources, information stealing or destructive actions. Cyber defenders must

detect and remove these malicious executables in order to continue to meet the mission

requirements of the enterprise.

This thesis examines the effects of feature extraction and selection on enterprise-level

malware triage, and provides a methodology for behavioral analysis of unknown executable

files with the goal of detecting malicious executables. Furthermore, this methodology

contributes to strategic cyber situation awareness by combining with fast malware detection

methods, such as static analysis, to change the game of malware triage in favor of cyber

defense.

Analysis of the experiments validates using both application programming interface

(API) argument information and behavior sequences of lengths from 11–14 to build

more accurate executable classification models, and does not find a significant benefit

of normalization. Given the high accuracy of 99.4% correct and low false positive rate
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of 1.75%, this method presents a prime candidate for a middle level dynamic method in a

malware target recognition (MaTR) architecture [7].

Following is a summary of contributions of this thesis:

• critical analysis of recent automatic malware analysis research including a compari-

son to this study (Sections 2.3.2 and 2.4),

• analysis and discussion of results from 64 experiments on 3 key parameters of

behavior analysis feature generation that the literature does not cover in a detailed

manner (Chapter 4), and

• analysis of the contribution to a malware target recognition architecture by this

dynamic analysis method, which establishes the feasibility of automatic behavior

analysis at the enterprise scale (Sections 4.5 and 5.2).

This thesis covers a number of considerations for cyber defenders to prudently design

a malware detection system, including the following summary. Cyber defenders using a

malware detection system must:

• match the analysis sandbox environment to the enterprise environment,

• tailor the training set to the types of threats that face the particular enterprise,

• select features to represent the unique behaviors of benign and malicious programs,

• use an efficient dynamic analysis component,

• experiment with around eight levels of parameters when retraining,

• keep the number of training validation repetitions less than 10 (e.g. use 3 or 1),

• analyze the independence of the methods in different MaTR tiers, and

• add additional domain-specific information to the model (as possible).

3



II. Literature Review

This chapter introduces the background of machine learning (Section 2.1) and malware

analysis (Section 2.2) before surveying recent research in dynamic analysis and

automatic behavior classification (Section 2.3).

2.1 Machine Learning

The field of Machine learning involves using theories of statistics, algorithms, and

knowledge representation to automatically represent information in a digital model of the

real world. The classification process involves building a model on two or more distinct

classes of training samples, and the model then attempts to predict the class of test samples.

Decision trees build a classification model by repeatedly bisecting the input space based

on a single attribute at a time. The tree building algorithm chooses the attribute that is

most likely to evenly cut the space by measuring the information gain of all the available

attributes according to the class labels. The support vector machine (SVM) algorithm finds

a nonlinear classification boundary by selecting training samples that minimize the distance

to the boundary [8]. The Wakaito Environment for Knowledge Acquisition (WEKA)

platform provides implementations of many machine learning algorithms including J48,

which implements the C4.5 decision tree algorithm [13, 24, 32].

Where classification uses training data that comes with class labels, clustering does

not need to start with labels in order to put samples into groups. With clustering, a selected

similarity measure (based on what makes sense for the data set) determines the relative

distance between samples. Then the chosen algorithm dictates how the measurements shall

determine which samples belong together in clusters. The hierarchical clustering with

complete linkage (HCL) method finds the shortest distance between two existing clusters

then combines the clusters by linking one sample from each cluster that maximizes the
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distance between those two samples. After repeating that algorithm until all the samples

link to a single cluster a provided threshold cuts the resulting tree relationship into a set of

clusters that each have a height that is no greater than the threshold [32].

Other learning algorithms, weak learners, perform only slightly better than random

guessing (accuracy slightly above 50% correct for a two-class problem). Ensembles of

weak learners combine many weak learners, each learning a different part of a problem

to create a better-performing model [17]. Weak learners are fast to develop and execute,

but some developers exert more research effort into developing a learning algorithm with

more heuristics, which means they apply domain knowledge to solving part of the problem

ahead of time. The resulting models perform better than weak learners, although more

complicated learners necessarily have a higher computational cost [33].

In this effort, pilot studies show that decision trees perform better than bagging or

boosting decision stumps and similarly to bagging or boosting decision trees. Ensembles

of decision stumps train more quickly than decision trees, but decision trees train faster

than ensembles of decision trees because each ensemble trains 10 models internally.

The practice of k-fold cross validation for building a robust classification model

involves randomly splitting the training sample set into k equally-sized folds of samples.

Then the learning algorithm builds a model with a training set of (k − 1) folds, leaving one

fold out. Then the algorithm uses the left-out fold as a testing set. Since the algorithm does

not train the model with any samples from the test set during an iteration, the unknown

samples validly measure the generality of the model. This process repeats k times, and

each fold becomes the test set for one iteration. Stratified cross validation maintains class

distributions throughout the method so that the relative size of the classes persists through

different folds.
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2.2 Static Analysis

A static analysis process reveals some attributes of an executable file without

executing the code. As a result, the process quickly provides moderate detail. Egele

et al. discuss various techniques for automatically analyzing malware and tools that

implement such techniques [9]. Static analysis suffers from generic vulnerabilities

to obfuscation by targeted malware. Moser et al. shows an approach for program

transformation that defeats static analysis methods [21].

Eskandari and Hashemi combine a control flow graph (CFG) from disassembly

information with an application programming interface (API) set to attain 97.77% accuracy

on a set of 2,140 benign files from Microsoft Windows XP SP3 and 2,305 “network worms”

from a repository at Shiraz University [10]. A CFG represents the possible actions that

the program could take upon execution. They compare the 97.77% from CFG analysis

to 92.19% accuracy using static n-grams as features. Both experiments use random forests

on the same sample set. To get around the high processing time from the large graphs

of CFG analysis, they flatten each graph into a feature vector using a sparse matrix

representation. Disassembly-based information obtains fine-grained information, but it

remains vulnerable to obfuscation. The paper does not report how much time the method

takes for collection or analysis.

T.E. Dube attains 99.92% detection accuracy on a set of 31,193 samples of 32-bit

malware from VX Heavens and 25,195 benign files from a clean install of Microsoft

Windows from vendor media [7]. In comparison with the Kolter and Maloof n-gram

method, Dube’s malware target recognition (MaTR) static method performs significantly

more accurately at the 95% confidence level [16]. In his experiments, the best commercial

antivirus product fails to achieve 50% accuracy on an unknown malware set. In addition,

Dube’s static method averages less than one second of scan time for each file, whereas even

the fastest antivirus product tested takes 43 seconds on average. Dube attains this result by

6



deriving the feature set from proven static features using expert domain knowledge instead

of the computationally heavy n-gram method.

Furthermore, Dube proposes a tiered architecture for cyber situation awareness [6].

In order to triage large amounts of unknown executable files, the bottom tier uses very

fast methods that achieve a low false negative rate. When the bottom tier flags a sample

as potentially malicious then the sample becomes an input to methods in the middle tier.

The middle tier methods still have high detection rates, but also have low false positive

rates, because the results from those methods go to cyber analysts at the top tier. Any false

positives that reach the top tier are wasted overhead for the analysts, so the false positive

rates of the underlying methods provide a way to directly measure the expected waste from

overhead. This thesis (Section 5.2) provides insight into a behavior analysis method that

fits into the middle tier of such an architecture to improve response times of cyber defenders

by reducing the workload.

2.3 Dynamic Analysis

An appropriate dynamic analysis of an executable file reveals the most definitive

information about its actions. Rossow et al. suggest some standard practices for malware

experiment design such as removing benign programs from malware collections and

commenting on the containment of the samples [27]. Bayer et al. introduce TTAnalyze

(now Anubis, which also analyzes Android APK files), which uses Qemu emulation with

Windows XP [4, 5]. TTAnalyze successfully reproduces and captures detailed data about

the behavior of the executable file under analysis. TTAnalyze collects data at the level of the

emulated processor, but it bridges the semantic gap with a kernel driver that leverages the

CR3 register and a userland process inside the guest. This means that the analysis method

is able to obtain information about the state of the operating system to allow the process to

correctly interpret the low-level instructions.
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Yin et al. employ a whole system fine-grained dynamic taint analysis in Panorama [34].

Taint tracking labels the memory address to where a function returns a value, then records

when another function uses that value as input or changes the value by writing into the

same location again. This tracking allows a low-level emulator to gain insight into how

programs interact with the operating system and produce a behavior report for the sand-

box system. It collects information from an emulator on the entire guest system including

high-level API calls and operating system interaction as well as an instruction trace with

taint tracking. The system includes automated user actions during analysis such as typing

text and browsing URLs. Upon testing with 42 malware samples and 56 benign samples,

Panorama detects all the malware and only reports 3 false positives.

Egele et al. survey the literature on dynamic analysis techniques, tools, and analysis,

but do not cover Cuckoo Sandbox, Windows 7 guests or 64-bit guests [9]. When a dynamic

system analyzes an unknown executable file, the system may be able to choose which guest

system is appropriate. If a malware author targets Windows 7, then the malware may not

behave the same if the analysis system executes the file in Windows XP because of API

differences between the versions. A similar phenomenon occurs with 64-bit malware on

a 32-bit analysis system.

Moser et al. explores multiple execution paths during dynamic analysis by taking note

of branching points and keeping track of the current state of execution [20]. Building

on Anubis, Moser completes one iteration of execution, then reverts back to one of the

branching points to continue analysis down a different path. This method can theoretically

find behaviors of a sample that may not surface otherwise, such as behaviors that require

user input or that wait for a specific time. However such completeness comes at the cost

of computation time according the inherent branching factor of the program, which is how

many alternate execution paths the program exhibits.
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Lindorfer et al. attempt to Disarm malware that evades dynamic analysis [18]. Disarm

works by submitting the samples to four different sandboxes and comparing the behavior

reports. The findings indicate that several approaches produce a useful comparison for

detecting anomalies [19]. Some malware authors include a capability to evade a certain

analysis environment, but Lindorfer shows that most evading malware samples fail to evade

in all environments under test. With a set of 1,686 samples, Disarm flags 431 (26%) as

potentially evasive. Detailed analysis indeed finds timing attacks against Anubis to which

a more plain Qemu sandbox is not vulnerable because it runs much faster. Other samples

evade Anubis by exiting if execution starts with explorer.exe as the parent process.

Lindorfer did note some false positives resulting from a peculiar (but not evasive) behavior

by a certain family of malware.

2.3.1 API Call Sequences.

Trinius et al. introduce a malware instruction set (MIST), which is a feature generation

technique that robustly represents a behavior action as a series of integers [29]. The API

call name maps to an integer that represents a general category and another that uniquely

represents that call name. The arguments also map to a hierarchical set of numbers that

sequentially reveal more detailed information from left to right. Trinius also demonstrates

feature selection over that representation by taking a level of numbers from the beginning

of the malware instruction set (MIST) records as the training information while leaving

out the rest of the data. As the level grows larger, the samples becomes more robust by

including more detailed information. However, including too much specific information

can reduce generality.

Rieck et al. takes a certain number of these segments in sequence to represent a chunk

of behavior as a q-gram [26]. As in the Rieck paper, this thesis refers to sequences of

behavior grams as q-grams, and uses the term n-grams to refer to bytes of binary data from

the static method as in Kolter and Maloof. The MIST approach with behavior sequences
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allows researchers to tailor the level of analysis to the available computing resources. Using

a larger q-gram representation exploits more details about the behavior of the executable

file, but processing the data takes more space and time.

Each relevant API call belongs to a more general category. For instance, all the API

calls that interact with the filesystem belong together, and all API calls that interact with

the network interface belong together. Each category maps to an integer, and each specific

call within each category maps to another set of integers. For example, the filesystem

category is number 03 and the MoveFile API call is number 04 within that category.

Therefore, the MIST report contains an entry 03 04 whenever a program moves a file.

Sequences of instructions, q-grams, across the training set yield useful distance metrics

between executable files for clustering and classification.

gram 09 02, 09 05

word category API

09 02 registry OpenKey

09 05 registry QueryValue

Figure 2.1: An example of a 2-gram at MIST level 1 with description of components

Figure 2.1 displays an example a 2-gram. The gram 09 02 refers to the registry API

call OpenKey, and the gram 09 05 refers to the QueryValue API call which is also in the

registry category. Hence, the 2-gram 09 02, 09 05 refers to the behavior of opening a

registry key then querying a registry value. Without argument information, it is impossible

to discern whether the executable is querying the value of the key that it just opened or if

the query targets a different registry key.
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03 05 00000001 00dc3932 00a93b39 002c392d ba92d7c6

MoveFile flags source file ext source file path dest file file dest file path

Figure 2.2: An example of a 1-gram at MIST level 2 with description of components

At MIST level 2, the grams include a level of function argument information.

Figure 2.2 shows an example of a 1-gram at MIST level 2. First, the 03 05 part refers

to the filesystem API MoveFile. Then there is a series of hash-encoded components that

represent different parts of the argument information. MIST level 2 contains the more

generic arguments, which would be common within a family of malware, but not arguments

that are likely to be specific to a specific variant. For the MoveFile API, for example, the

generic arguments include

• flags that represent filesystem move options,

• the source file, which includes

the file extension and

the path in the file system (not including the file name), and

• the destination file location, which also includes

the file extension and

the path.

On the other hand, MIST level 2 does not include the actual file base names. Such specifics

would fall into a MIST level 3. Not every API call requires the same number of arguments,

so only the arguments that are present in the behavior report get encoded into MIST format.

This representation also allows effectiveness of geometric clustering techniques,

which Rieck et al. show performs efficiently [26]. When using prototypes for clustering,
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Rieck reports that a quad-core Opteron 2.4GHz system processes at a rate of 15,000 reports

per day and uses 5GB of memory during regular clustering.

2.3.2 Behavior Analysis.

Rieck et al. implement hierarchical clustering with Euclidean distance complete

linkage (HCL) [26]. Training starts with 3,133 samples from Sunbelt Software that come

from 24 malware families that each have no more than 300 members. This labelled training

set forms a reference to start the clustering process. After clustering on a set of 33,698

samples the algorithm finds 434 clusters which each contain 69 reports on average. Rieck

shows high consistency of the top ten clusters with respect to Kaspersky labels, which

indicates that the clusters represent the differing families of malware by behavior. Rieck

explains that the majority of inconsistency that does occur comes from antivirus industry

labels. The Rieck paper does not provide time measurements for collecting the dynamic

analysis data.

Bailey et al. perform single-linkage hierarchical clustering on malware behavior [2].

They use a high-level view of behavior, recording only the non-transient changes to the

system that persist after execution completes. For example, a malware file might enumerate

the file system to get all the filenames present on the system then write those filenames to

a file. Such behavior would be of value to an adversarial intelligence operative. Only the

output file persists as evidence of the behavior of the malware, and the transient activity

of the filesystem enumeration does not factor into their analysis. Bailey claims that this

method avoids obfuscation of static analysis and low-level API sequences. They use the

Backtracker system in VMware with Windows XP. They collect behavior data from 3,698

malware samples from the Arbor Malware Library (AML) over six months [1].

The O(N2) normalized compression distance step of the Bailey process takes the most

time in both time and memory space as the number of samples rises to 500, compared to

the preprocessing and clustering steps. The whole process takes about 220 seconds and
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only 300MB of memory for 526 samples. On a 3, 698 sample set, the method finds 403

clusters. Since 311 files do not exhibit any behavior during the process, Bailey claims

a 91.6% detection rate, and then compares that detection rate to a 51.5% detection rate

of Symantec. The report lists the common limitations of dynamic analysis, but does not

assign a root cause to any of the files that failed to behave during observation. Bailey et

al. do not run the process on non-malicious files to compare how closely other executable

files compare to malicious files or to measure false positive tendencies of the high-level

method [2].

Bayer et al. cluster 75,000 behavior reports within three hours and four gigabytes of

memory with an Anubis system extended with taint tracking [3, 5]. As above, taint tracking

labels the memory address to where a function returns a value, then records when another

function uses that value as input or changes the value by writing into the same location

again. This tracking allows a low-level emulator to gain insight into how programs interact

with the operating system and produce a behavior report for the sandbox system. The

blazing performance is due to the locality-sensitive hashing (LSH) clustering algorithm

which approximates the distance measurements to achieve a good result quickly that is

within a threshold parameter of the optimal solution.

Hu presents a malware detection system MutantX and a malware clustering system

Duet [14]. The Duet dynamic analysis component uses binary features of n-grams of

system calls from strace call traces (q-grams). This method employs the system call

name and a canonical category to inform each datum, leaving out information from call

arguments, which is similar to MIST level 1 [29]. The method does not specify how many

features to select. Hu performs both static and dynamic analysis on 5,647 malware samples,

and normalizes the feature vectors onto the unit circle. The static method computes n-grams

of instruction sequences from a disassembly of the executable file. Hu notes that static

analysis fails on 655 samples, while dynamic analysis fails on 645 samples. However,
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only with 72 samples do both methods fail. Comparing successful processing of samples

using static 3- and 4-grams and dynamic 3- and 4-grams with combined behavior and static

features, Hu finds 10%–15% improvement in successful processing with the combined

information. This method fusion brings the clustering method to 98.72% coverage (72

samples failed of 5,647).

2.4 Summary

This thesis analyzes aspects of several other efforts. Table 2.1 summarizes similarities

and differences of this and other works. None of those studies take advantage of as

large a sample set, although Rieck is the closest with about a third as many, and none

obtain samples from OpenMalware or US-CERT. Of the researchers that pursue a dynamic

analysis approach, only Bailey does not capture API calls, instead noting only the persistent

changes to the sandbox that remain following execution of the sample.

Two other of those efforts make classification between two or more sets a goal, while

three seek to cluster a single body of samples by measuring similarity. One who choses

to cluster implements an ensemble learning method, and one that classifies implements an

ensemble (of a different sort). This study does not use ensemble methods because pilot

tests show that fast ensembles are not as accurate as decision trees and accurate ensembles

are slower than decision trees.

The details of these comparative studies reside in Table 2.2, where only one other uses

a MIST representation for feature generation. Indeed, that research is first to publish the

MIST, and while some other papers note the MIST in citations, none publish work that

implements it. Only Kolter and Maloof use nearly as long gram structures, although that

research uses static grams rather than behavior-based grams. Also, using long grams means

the feature space gets very large, and only this study and Kolter and Maloof employ feature

selection. Three papers mention normalizing feature vectors, but only this work publishes

a comparison of normalized and non-normalized results.
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Most of the studies use the same sorts of machine learning techniques. The k-nearest-

neighbors (kNN) algorithm is popular both for clustering and classification, and the other

clustering studies use HCL. The other two classification studies make a point to compare

the common algorithms of naı̈ve Bayes (NB) and SVM with the J48 decision tree in

WEKA. Firdausi adds a multilayer perceptron (MLP) classifier to the model comparison,

which trains in acceptable time with as few of samples in that study.

The set of studies that the summary tables cover is not exhaustive of all malware

detection research, but the tables do contain the primary publications to date that bear

major points in common with the research reported in this thesis.

Table 2.1: Overview summary of related work. An asterisk (*) denotes similarity to this

research.

Author(s) analysis N source features learning ensemble

Bristow dynamic 90,578 OM/USCERT API classify no

Rieck [26] dynamic* 33,698* CWS API* cluster no

Hu [14] both 5,647 Symantec instructions+API* cluster vote/bag

Bailey [2] dynamic* 3,698 AML persistent cluster no

Kolter [16] static 3,622 MECS n-grams classify* boosting

Firdausi [11] dynamic* 470 Anubis behavior;not specific classify* no
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Table 2.2: Detailed summary of related work. An asterisk (*) denotes similarity to this

research.

Author(s) l n M norm model result

Bristow 1,2 1-16 500 both J48 99.4% acc., 0.999 AUC

Rieck [26] 1,2* 1-4 sparse/all yes HCL 80% recall

Hu [14] 1 3,4 all yes kNN 70% covg., 0.9 prec.

Bailey [2] NA 1 all no HCL 91.6% acc.

Kolter [16] NA 1-10* 10-10,000* no kNN,NB,SVM,J48* 0.9958 AUC

Firdausi [11] 1 1 116&11 no kNN,NB,SVM,J48*,MLP 96.8% acc.
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III. Methodology

Binary files execute a sequence of application programming interface (API) calls.

This sequence represents the behavior of the executable file [26]. Let each API

call along with the arguments represent one action. If a program writes to a file in the

Windows operating system, the first action is to call the CreateFile API with arguments

that identify the file to open for writing. On success, the API call returns a valid handle to

the open file. With the handle, the program then calls the WriteFile API to put data into

the file. A benign word processing program uses these API calls to save a users file, but

some malicious programs use these API calls to save a record of keystrokes without user

knowledge.

3.1 Problem Definition

The specific sequence of API calls defines the behavior of a program. Certain

sequences occur in legitimate software, but to some extent different sequences occur in

malware. This study examines the effects of malware instruction set (MIST) feature

generation on enterprise-level malware triage.

3.1.1 Goals and Hypothesis.

The goal of this research is to determine an efficient and effective method to detect

malware. The hypothesis is that certain feature selection parameter levels lead to machine

learning performing with higher accuracy and efficiency at detecting malware compared to

other levels.

This thesis addresses the following:

• Strategic Goal: Detect malware efficiently and effectively.

• Tactical Goal: Evaluate machine learning schemes for executable file classification.
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• Hypothesis: Certain parameter levels enable more effective malicious file identifica-

tion.

3.1.2 Approach.

The approach of this effort is to compare the efficiency and effectiveness of machine

learning techniques with various levels of key feature selection parameters at classifying

executable files. This study employs the MIST feature generation technique to encode

behavior report information into a hierarchical format [26].

The experimental levels provide the basis for comparison relative to the same input

sample set. The sample set results from random sampling of the large set. Standard

techniques such as antivirus or previous analysis results validate the large sample set as

malicious or not.

3.2 System Boundaries

The System under Test (SUT) in this experiment is a Malware Detection System

(MDS). The MDS accepts a workload of known, labeled training sample executable

files or unknown executable files, and it provides a malware detection service that

identifies executable files which display malicious behavior. The dynamic analysis engine

component creates dynamic analysis reports based on observed events. The feature

generation component translates the behavior reports into MIST format and generates

q-grams before selecting the most useful grams as features by filtering by information gain.

The behavior analysis component is the Component under Test (CUT), which accepts sets

of feature vectors and provides malware detection and classification capability. The block

diagram in Figure 3.1 depicts the SUT and its components.

While this study measures the timing of a specific dynamic analysis engine known

as Cuckoo Sandbox using VirtualBox, comparing timing measurements of different

implementations is outside the scope of this study [12, 22]. The rest of the system
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Figure 3.1: Malware Detection System Component Diagram

does not rely on a specific dynamic analysis engine implementation since all known

implementations have the potential to create behavior reports that meet the requirements

of the MIST feature generation technique. Similarly, this study does not depend on a

specific computing platform. While this research effort validates this method on Microsoft

Windows XP Service Pack 3 virtual guests, the concept extends to all other common

operating systems where API call observation is possible through analogous methods.

3.3 System Services

The malware detection system detects malware within a set of unknown executable

files by building a model from information the system discovers in a training set of

executable files. A set of non-malicious benign files and a set of known malware samples

comprise the training sample set. The system outputs a cryptographic hash of the

executable file (for identification) along with the class label as the classifier determines.
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The class labels derive from the labels correlated with the known training sample set. Thus,

the approach is an example of supervised learning.

The success outcome is when the class label is correct for an executable file. A failure

outcome is when the class label is incorrect. For failures, either the label indicates that

the executable file is malicious when it is in fact benign, which is an example of a false

positive, or the label indicates a benign file that is in fact malicious, an example of a false

negative. False negatives are undesirable because they represent a missed opportunity to

detect a malicious program, which means that an adversary retains the capability provided

by that program. The false positive rate of a malware detection system allows operators to

calculate how much wasted overhead the analysts must manually review.

The system discards samples if there is not enough behavior in a report and is therefore

not desirable for input to clustering or classification algorithms. The cutoff threshold of the

number of actions required is a result of applying domain knowledge and inspecting the

smallest reports to find an appropriate level. There are 4,038 out of 90,578 total samples in

this study that do not perform any actions. If a malware sample does not display behavior,

then there is either some difference between the malware target environment and the test

environment, or the sample simply does not perform any behavior. The system need not

learn from nor detect malware samples that do not perform any behavior. Cyber defenders

must take steps to ensure that a test environment matches the target environment in the

enterprise in order to ensure that malware targeted for that enterprise performs behavior in

the test environment.

Another failure outcome occurs when no features from the selection list of the top

features, by information gain, that come from a sample. Such samples do not contribute

information to that specific level of parameter levels. Thus a drawback exists from limiting

the number of features. On the other hand, there exist millions of potential features at

higher MIST levels and q-gram lengths, requiring feature vectors to reside in a space
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with hundreds of millions of dimensions. This curse of dimensionality requires attention

when cyber analysts select a feature selection method for a machine learning scheme. This

method deals with the large number of potential features by selecting the top 500 features

according to information gain.

3.4 Workload

The workload this study provides to the SUT represents a set of executable files

from an enterprise cyber infrastructure (ECI). A cryptographic hash of the contents of

an executable file identifies the file in the workload. Identifying files by hash allows

the system to treat two executable files that differ by a single bit or more as separate.

Although file source data such as filename and source host are available to host analysis

teams, such data are outside the scope of this experiment. A default installation of the

Microsoft Windows XP Service Pack 3 operating system contains thousands of unique

binary executable files, and a newly installed application may contain one to hundreds of

executable files. Additionally, each update applied to an operating system or application

adds or modifies one to hundreds of executable files at a time. Such updates introduce

variability to a given ECI. Therefore, the distribution of input executable files to the SUT

strongly depends on the individual ECI. The sample set consists of benign software samples

similar to the most generic ECI. The distribution of specific software products does not

necessarily affect the overall performance of a learned model because different versions of

software that accomplish the same generic service likely exhibit similar behavior.

A current limitation of the Cuckoo Sandbox configuration pushes the ability to

operate 64-bit guests outside the scope of this research, but the Cuckoo Sandbox developer

intend to provide 64-bit capability in the future. Thus, this study uses 32-bit executable

file samples in a 32-bit Windows XP SP3 guest. Cyber operators should ensure that the

sample set for an operational malware detection system includes samples germane to the

operational cyber infrastructure.
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This study uses a set of malware from the US-CERT and Open Malware malware

collections, which reflect many types of malware, including backdoors, constructors,

sniffers, droppers, spyware, viruses, worms and trojans [25, 30]. This research randomly

selects a subset of 64,987 32-bit Windows (Portable Executable format) malware samples

from this large collection.

The whiteware set includes executable files from operating system vendor media,

with the assumption that these executable files do not perform malicious behavior. Cyber

defenders must add additional whiteware samples from installations of common types of

user applications that occur in the enterprise cyber infrastructure. The white samples for

this study originate from known clean Microsoft Windows media from Windows 2000 to

Windows 7. This study uses a total number of 25,591 whiteware samples, and the total

number of samples in the data set comes to 90,578.

The large number of malware samples from a very large collection precludes a detailed

analysis of malware families within the scope of this study. However, this research uses a

large number of samples randomly selected from a collection that contains a wide variety

of malware. Therefore, the training set of malware executables has the potential to contain

a wide variety of unique malicious behaviors. Other studies show that malware families

usually perform similar behaviors, so whichever variants randomly appear in the training

set contribute to the available training information for the learning algorithm. It is possible

that a large malware family randomly present in the training set could introduce a bias

toward detecting that family, however if such a family is more prevalent in the wild then

detecting that family is a desirable trait. Operationally, cyber defenders should tailor the

training set to the types of threats that face the particular enterprise.

3.5 Performance Metrics

The performance of the SUT comes from several measurements. The classification

accuracy rate (%acc) of the malware detection model is the number of correctly-classified
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samples divided by the total sample size (percent correct). The false positive rate (FPR)

is relevant for evaluating how many files the cyber analysts must manually review. The

false negative rate (FNR) indicates the importance of a defense in depth strategy including

alternative detection capabilities. A receiver operating characteristic (ROC) curve of a

classifier graphs the true positive rate versus the false positive rate. Comparing several ROC

curves shows the relative tradeoffs in false positives and false negatives. This study uses the

area under the ROC curve (AUC), which is a summary of the ROC curve for a classifier,

because it is simpler to compare 64 experimental classifiers by AUC than attempting to

display and view all 64 ROC curve plots. Some relative false negative and false positive

information is available in a full ROC plot that is not available in the AUC summary, but

the AUC is suitable for this study.

In addition, the throughput of the SUT is the number of files that the system processes

per unit time. The training time is the time the system requires to build a model from

a specific machine learning technique with a given training set and feature selection

parameter level.

3.6 System Parameters

Many parameters impact the performance of the SUT. The specific implementation

of the dynamic analysis (DA) engine, feature generation component and machine learning

component each require inspection of several relevant parameters.

3.6.1 Dynamic Analysis Engine.

Increased hardware capability increases the potential to execute additional jobs in

parallel. This study utilizes available hardware to run 12 sandboxes in parallel. The

operating system affects certain specifics of the implementation, but not the general concept

under study [9]. This research uses a Dell server with two six-core Intel Xeon 2GHz

processors and 500GB system memory. The operating system is 64-bit Ubuntu 12.04
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Desktop (the sandbox environment requires the desktop version rather than the server

version).

Emulation or virtualization has various effects, but the investigation of the differences

of such effects is outside the scope of this study [9]. This study uses full operating system

virtualization with Oracle VirtualBox [22].

Various types of hooking capture API calls; Cuckoo Sandbox uses dynamic link

library (DLL) injection. The DLL injection method gets in the way of the test program

calling API calls and logs all the calls before forwarding them to the operating system.

Instruction-level tracing with data taint analysis captures behavior a different way, but an

experimental comparison between the methods is outside the scope of this study. Any

method that produces a MIST-compatible behavior report can contribute to this method.

Some publications do not report the dynamic analysis timeout, which is normally five

minutes. This methodology employs a 15 second timeout in order to increase throughput.

Comparing different timeouts is outside the scope of this study. The goal is to capture any

malicious behavior during processing, but some files take a long time to execute. This

study assumes that most malware completes malicious behavior quickly, within about five

seconds. The timeout is higher, at 15 seconds, in order to allow sandbox initialization and

the API hooking time to complete before the file executes. This assumption means that

the system does not detect malware that waits 15 seconds or more to execute malicious

behavior. However, even waiting for five minutes does not guarantee enough time to

discover all malicious behaviors. A malware author is able to evade a detection system

that has a particular timeout by finding out what the timeout is.

Multiple path analysis (MPA) might help solve the timeout problem. MPA

increases the potential to detect obfuscation and avoid long delays, but requires additional

computational time according to the branching factor of the file under analysis [20].

Experimenting with multiple path analysis is outside the scope of this study.
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3.6.2 Feature Generation Component.

MIST level 1 records API name and category, and level 2 adds generic argument

information (if present). Level 3 adds specific argument details. This study explores both

level 1 and level 2. The parameter q is the length of q-gram instruction sequences. Previous

studies use q = 2 or q = 4, and this study researches the effects of lengths from 1–16.

Feature selection uses information gain as a measurement of feature usefulness. The

system keeps the top 500 features (q-grams), which is the same as the number Kolter

and Maloof use as feature selection for training decision trees. Kolter and Maloof

find 68,744,909 distinct static n-grams from a set of 476 malicious executables and 561

benign executables, and hence select the top 500 of those n-grams [16].

However, as Section 4.1 reports, this method finds from 85–4,171 grams at MIST

level 1 and from 1,499,980–17,686,084 grams at level 2 although using a larger sample

set of 90,578 samples total. This method finds far fewer distinct grams because the MIST

behavior report gram space is more sparse than the binary file byte gram space in the static

experiments. Since keeping 500 out of 68 million works best for the static n-gram method

for Kolter and Maloof, then 500 should be sufficient out of 17 million features, since the

features go to the same machine learning technique (J48). In addition, each feature from

this behavior-based method potentially represents more information than arbitrary bytes

extracted from the binary file. Therefore, this method should not require more features

than the static n-gram method in order to represent useful information for the learning

algorithm. However, if fewer features would perform just as well as 500, then including

all 500 should only hinder computational burden and not classification accuracy. Therefore

investigating the effects of different feature space sizes is outside the scope of this study.

3.6.3 Machine Learning.

This study uses the Wakaito Environment for Knowledge Acquisition (WEKA) J48

implementation of the C4.5 decision tree learning algorithm [13]. This study uses 64,987
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malicious and 25,591 benign executable files, for a total set of 90,578 samples. The

malicious files come from a combination of malware sets from US-CERT and Open

Malware [25, 30]. The benign files come from known clean Microsoft Windows operating

system install media. The experiments use 10-fold stratified cross validation in order

to measure generality. Each machine learning algorithm sees the same set of folds per

repetition.

3.7 Factors

The factors for this experiment are the MIST level, the length of q-grams (q), and

whether or not the feature vectors undergo normalization. This experiment evaluates two

MIST levels: the level without any argument information and the level with partial, non-

specific, argument information. The levels of q range from 1 through 16. Gram lengths

longer than q = 16 lead to computationally prohibitive feature selection. The normalization

factor includes two levels: non-normalized, which leaves the feature vectors as vectors of

ones and zeros, and normalized, which applies basic vector normalization to project the

magnitude of the vector onto the unit circle while maintaining the direction. Several authors

mention these factors during similar research [2, 4, 16, 26].

Table 3.1: Factor Levels

Factor Levels

MIST level (l) 1 – API call name only

2 – API name and generic arguments

Length of q-grams (q) 1–16

Normalization Vector normalization (unit circle)

Not normalized (binary 0/1)
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3.8 Evaluation Technique

This experiment measures an instance of the CUT. Standard 10-fold cross-validation

measures the generality of each model.

A number of the dynamic analysis runs undergo manual validation. This practice

validates that the dynamic analysis component records malicious behavior.

3.9 Experimental Design

The methodology employs a full-factorial experimental design for a total of

2 × 16 × 2 = 64 experiments. Each experiment undergoes 10 repetitions to explore the

distribution variance in addition to the 10-fold cross validation, so each factor level

undergoes 100 runs total. The cross validation is stratified so that class distributions remain

similar throughout the process. Furthermore, each different experiment sees the same set

of cross validation folds so that the relative mix of samples does not affect the variation

in the results. Analysis uses a 99.9% confidence level to determine statistical significance.

Since the goal for false negative rates is less than 0.1%, measurements need to have enough

confidence to make a significant difference.

3.10 Methodology Summary

This method of malware detection involves detailed executable file classification. To

determine which of the selected factor levels performs best in this domain, each factor tests

on the same sample sets with the J48 learning algorithm. The input data are q-gram feature

vectors from MIST feature generation based on dynamic analysis reports. Any dynamic

analysis engine that can translate behavior reports into MIST format can compare to the

results of this study.
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IV. Results and Analysis

This chapter reports results and detailed analysis of the dynamic analysis engine, the

feature generation component, and the machine learning component by the 6,400

experiment runs. First, Section 4.1 covers feature selection. Next, Section 4.2 presents

the effects of the malware instruction set (MIST) level (l) and q-gram length (q) factors

on classifier performance. Then Section 4.2.2 contains the effect of normalization, and

Section 4.3 presents findings on the effective sample set size. Last, Section 4.6 analyzes

limitations of this research and dynamic analysis at large.

4.1 Feature Generation and Selection

After dynamic analysis of the 90,578 samples, there are 4,038 samples that do not

exhibit behavior. Table 4.1 displays the dynamic analysis results. Section 4.6 discusses

reasons for those 4.46% of samples not yielding behavior. The 86,540 samples that do

perform behavior, which make the other 95.54% of the total set, exhibit 85 different

application programming interface (API) calls. That is, at MIST level 1, there are 85

unique 1-grams in the behavior reports. For example, in the 1-gram 03 04, the number

03 refers to the filesystem category, and 04 refers to the MoveFile API call.

Table 4.1: Summary of dynamic analysis performance

Perform behavior 86,540 95.54%

Do not perform behavior 4,038 4.46%

Total 90,578 100.00%

Table 4.2 shows the relationship between the factor levels, the number of grams that

q-gram analysis finds in the behavior reports, and the theoretical number of possible grams
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Table 4.2: Detailed examples of feature generation component results

MIST q # grams theoretical space size % of space

1 1 85 120 70.83%

1 2 2,850 852 = 7, 225 39.45%

1 3 20,665 853 = 614, 125 3.36%
...

...

2 1 1,499,980 N/A* N/A*

2 2 3,722,381 1, 499, 9802 = 2.25 × 1015 1.65 × 10−7%

2 3 5,737,362 1, 499, 9803 = 3.37 × 1018 1.70 × 10−12%
...

...

* There is no formal limit on unique argument data.

for three examples from each MIST level. When q = 2, there are 2,850 unique 2-gram

sequences in the behavior reports, which is only 39.45% of the possible 2-long sequences

of those 85 API calls. For example, the gram 09 02 refers to the registry API call OpenKey,

and the gram 09 05 refers to the QueryValue API call which is also in the registry

category. Hence, the 2-gram 09 02, 09 05 refers to the behavior of opening a registry key

then querying a registry value. Without argument information, it is impossible to discern

whether the executable is querying the value of the key that it just opened or if the query

targets a different registry key.

As the value of q increases, the number of unique q-grams that occur in the behavior

reports also increases, but not as fast as the number of possible grams. Each additional entry

in a sequence multiplies the total possible number of permutations of grams by the number

of possibilities for that entry (e.g. 85 in this data set). Hence, 3-grams have 853 = 614, 125

possible unique values, and 4-grams have 854 = 52, 200, 625 possibilities. Thus the space
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of possible grams increases exponentially with gram length, but the grams that occur in the

data set do not fill up that space.

Figure 4.1: Graph of the number of millions of unique q-grams present in the data for each

level of the MIST level (l) and gram length (q) factors with depiction of the size of the

space of possible grams for MIST level 1

For MIST level 2, which records one level of function arguments, the number of

possible gram variations is much higher. There are 1,499,980 unique 1-grams within the

behavior reports of this data set at MIST level 2. This occurs because the arguments can be

any value that the program could provide to that API call. Figure 4.1 indicates that, as with

MIST level 1, the number of unique q-grams does not increase exponentially, but rather

appears to increase linearly (or logarithmically) as the value of q increases.
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4.2 Classifier Performance

This section reports that the MIST level factor contributes the largest effect to classifier

performance and normalization does not significantly affect performance with this data set.

The level of significance for the confidence intervals is 0.001 (i.e. 99.9% confidence that

the true mean falls within the interval).

4.2.1 Overview.

Figure 4.2 shows that MIST level 2 dominates level 1 on this data set. Over the

entire data set, MIST level 2 averaged an area under the receiver operating characteristic

(ROC) curve (AUC) of 0.99106 ± 0.00065 at the 99.9% confidence level. The additional

information that MIST level 2 includes over level 1 appears to better inform the resulting

decision tree model. Additionally, 10 repetitions are clearly sufficient to characterize the

majority of the variation amongst runs of the algorithm on this data set. This could mean

that a lower number of repetitions would still prove sufficient in an operational environment

where saving computation time improves reaction time. The following subsections provide

more detailed analysis regarding the results of the experiments.

4.2.2 Normalization.

Figure 4.2 also shows that normalization does not attain a statistically significant effect

on classifier accuracy at the 99.9% confidence level (nor at 95% confidence). Machine

learning methods usually use normalization to reduce the bias of samples that contain a

larger proportion of features because normalizing sets the magnitude of each feature vector

to one without changing the direction of the vector.

Since normalization does not affect classification performance with this data set, then

either the classifier is not sensitive to sample vectors that have a comparatively large

magnitude, or the data set does not contain very many samples that yield large vectors. A

larger feature vector is the result of a sample that performs more behaviors that the feature

selection filter accepts. A data set does not fully demonstrate the normalization benefit if
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MIST level AUC 99.9% C.I.

1 0.9823 ±0.00045

2 0.9911 ±0.00065

Normalization AUC 99.9% C.I.

non-norm 0.9866 ±0.00068

norm 0.9868 ±0.00055
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Figure 4.2: Details and chart of area under ROC comparisons of classifier performance by

MIST level and normalization with 99.9% confidence intervals

there is a very small percentage of vectors with more attributes present compared to other

vectors.

4.2.3 MIST and q Details.

Figure 4.3 shows that MIST level 2 consistently performs at a higher AUC than MIST

level 1 except where the q-gram length reaches 15 and 16. MIST level 1 also reaches lows

at q = {15, 16}. The 99.9% confidence intervals validate that the differences between the

means are significant for the rest of the levels. Some potentially outlying data points include

q = {7, 15, 16} for both MIST levels 1 and 2 because each of those points are greatly lower

than the points around them. Further examination of those outlying results continues below

in Section 4.3. Appendix B provides tables with further details on measurements from each

experiment.
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Figure 4.3: Area under ROC comparison of classifier performance by MIST level and

q-gram length with 99.9% confidence intervals

4.3 Number of Samples

Of 90,578 samples total, 86,540 samples, 95.54%, yield behavior in this dynamic

methodology. Figure 4.4 shows that the number of samples steadily decreases as the levels

of the factors increases, which reveals that a large percentage of samples from the dynamic

analysis results lose representation at high MIST level and q-gram length.

There are more unique q-grams both when grams are longer and when adding

argument data. Thus, the 500 features that win selection comprises a much smaller

percentage of the set of all possible features. Hence many samples no longer contain a

selected behavior. This effect seems to be especially strong for q = {15, 16}.
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Figure 4.4: Comparison of resulting sample sizes by MIST level and gram length

The size of the sample set does not affect model performance as much as the amount

of information available from each sample. Figure 4.5 at first shows a slight positive

correlation between sample set size and classification accuracy for MIST level 1, however

there seems to be a compounding factor. The labels of the interesting points from Figure 4.3

indicate that the lowest performance coincides with the fewest available samples when

q = {15, 16}. Ignoring those outlying cases seems to reveal a slight positive correlation for

MIST level 1, but a slight negative correlation with MIST level 2. Therefore, a low sample

size adequately explains why learning performance is comparatively lower for q = {15, 16}.

However, sample size does not explain the low performance at q = 7, which is especially

pronounced in MIST level 2. On the other hand, false positives and false negatives are not
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out of the ordinary at q = 7, even though those values do change wildly with q = {15, 16}.

The same is true for classification accuracy by the percent correct measure.
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Figure 4.5: Performance with 99.9% confidence intervals according to sample set size after

removing zero-vectors with selected labels by MIST level (l) and q-gram length (q)

The increasing levels of the MIST and q-gram factors yield feature vector sets of

decreasing sizes because the methodology discards vectors that equal zero. Such vectors

do not provide useful information to a model because it represents an executable file

that exhibits no behavior. However, some files that do exhibit behavior end up with a

feature vector of zero because only 500 features survive feature selection. This feature size

parameter agrees with the number that Kolter and Maloof find useful for learning based

on static 4-grams [16]. The usefulness of this level of the parameter arises from both
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the learning algorithm and the implicit dimensionality of the input data. Although this

methodology differs from Kolter and Maloof regarding the source of the input data (the

implicit dimensionality may differ), the learning algorithm is the same. That is, since 500

features works for the decision tree algorithm of Kolter and Maloof, then it is feasible

that 500 features approximates a useful feature size for the decision trees in this study.

Kolter and Maloof find 68,744,909 distinct static n-grams from a set of 1037 samples

total, and hence select the top 500 of those n-grams [16]. However, this method finds

only 17,686,084 behavior q-grams using a sample set of 90,578 samples total. This method

finds far fewer distinct grams because the MIST behavior report gram space is more sparse

than the binary file byte gram space in the static experiments. Table 4.3 shows the selection

rates for the first three levels of q for MIST levels 1 and 2.

Table 4.3: Detailed examples of feature selection rates

MIST q # grams features % of grams

1 1 85 85 100.000%

1 2 2,850 500 17.544%

1 3 20,665 500 2.420%
...

...

2 1 1,499,980 500 0.0333%

2 2 3,722,381 500 0.0134%

2 3 5,737,362 500 0.0087%
...

...

Since keeping 500 out of 68 million works best for the static n-gram method for Kolter

and Maloof, then 500 could be sufficient out of 17 million features, since the features go

to the same J48 machine learning technique. This means that very similar feature vectors
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input to machine learning in both studies. In addition, each feature from this behavior-

based method potentially represents more information than arbitrary bytes extracted from

the binary file. Therefore, this method represents more semantic information per feature

than the static n-gram method.

Operationally, cyber operators should select a set of features that is large enough to

represent the number of unique behaviors that benign and malicious programs perform.

Then the machine learning algorithm discovers the relationship between the behaviors and

the maliciousness of executable files from the training samples.

4.4 Timing Analysis

The dynamic analysis component takes 12 days to generate behavior reports from

the 90,578 samples by running 12 parallel guests in Sub VirtualBox with Cuckoo Sandbox

on a Dell server with two six-core Intel Xeon 2GHz processors and 500GB system memory

on Ubuntu 12.04. The analysis timeout is 15 seconds, but each sample experiences

an additional 54 seconds of overhead on average. The overhead mainly results from

processing large behavior report files from executables that log a large number of API

calls. Optimizing the dynamic analysis process for speed is outside the scope of this study

because commercial dynamic analysis products solve this problem.

Translating a generic behavior report out of a dynamic analysis engine into the MIST

format takes less than a second for small reports, and operates in time proportional to

the length of the behavior report. Extracting the q-grams out of the MIST reports takes

2.4 minutes at MIST level 1 and q = 1, and it takes 6.9 hours for MIST level 2 with q = 16.

Naturally, this processing time is proportional to the number and size of grams.

Training decision tree models with the Wakaito Environment for Knowledge

Acquisition (WEKA) J48 implementation of the C4.5 algorithm on the 6400 experiment

runs takes 81 days worth of computational time [23]. Using 20 parallel processes on the

same hardware as above takes 4 days in the WEKA experimenter [13].
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The dynamic analysis component and the experiments together take 16 days to run on

these 90,578 samples. In an operational environment where time matters, a commercial

dynamic analysis component could process 50,000 samples or more per day depending

on the available level of investment in the enterprise for definitive malware detection.

Furthermore, if only eight levels of parameters need exploration, and the number of

repetitions can be less than 10, then training a detection model can take under one hour.

After building the model, each suspicious sample undergoes dynamic analysis, which

takes 79 seconds on average during this study, then the resulting behavior report uses the

same MIST global settings as the training set for translating into the MIST format. Then

q-gram extraction uses the same indices as the training set to create a feature vector for

the sample, which provides an input to the detection model. A decision tree classifies

input in logarithmic time relative to the size of the tree, which averages 0.043 seconds of

computational time during the experiments in this study.

Therefore, if an enterprise accomplishes this analysis method with a baseline of their

approved software along with a set of malware that includes current threats, then they

can have a functioning detection model in two business days. Then the dynamic analysis

component and the model can classify suspicious samples at a rate of 35 samples per hour

(again assuming commercial processing of 50,000 per day).

4.5 Operational Analysis

The information that a machine learning algorithm encodes into a model intrinsically

comes from the input data. Therefore, the degree to which a model correctly reflects the real

world depends on how representatively the input data captures relevant information about

the real world goals. In a malware behavior model, an ideal data set contains samples

that exhibit all the malicious behaviors to which an enterprise cyber infrastructure (ECI)

is vulnerable. On the other hand, the machine learning algorithm consumes computational

resources for each instance in the input data, so the ideal sample size for input data is
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the number of samples that completely contains the necessary malicious behavior sets

without any duplicates of those behavior sets. However, fully identifying such a set requires

complete behavior analysis of the entire available set, including all unknown malware

behaviors from the future of a given ECI. Such a requirement takes the computational

cost of obtaining the training set from high to impossible. On the other hand, a nearly

complete set maintains usefulness so long as it contains sufficient behavior sets to identify

some of the malware present in an ECI, which allows cyber operators to target different

techniques capable of discovering additional malware.

The top 10 false positive rates of the data sets appear in Table 4.4. The lowest average

false positive rate is 1.75%, achieved by MIST level 2 with q = 4. The top-performing data

sets q = {13, 14} appear next, followed by some shorter grams. All 10 come from MIST

level 2.

Considering an example operation on an enclave network, suppose there are 10,000

executable files on hosts in the enclave. A team of eight cyber analysts deploy to the

enclave in response to indications of an intrusion, and indeed there are 100 malware files

hidden somewhere on the enclave. If each of the 8 cyber analysts can process 25 files per

day, then to manually inspect 10,100 files it would normally take 10,100/25/8 = 50.5 days

to find the malware. Assuming that the average accuracy of 99.4% and false positive rate

of 2.2% of the MIST level 2 and q = 14 model applies to the example operational file

set, this method would falsely classify 10,000 × 0.022 = 220 benign files as malicious and

detect 100×0.994 = 99 malicious files. The team of analysts can now process the 319 files

manually and find all but one of the malware in 319/25/8 = 1.6 days, which is over a 97%

workload reduction.

Expanding this concept to the next level, consider a fast malware detection method,

such as the static component of the Dube malware target recognition (MaTR) architecture.

Dube’s static method reaches 99.9% detection with a 0.1% false positive rate [7]. Given
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Table 4.4: Top 10 Data Sets by False Positive Rate (FPR) at the 99.9% confidence interval

(C.I.)

MIST q N FPR std. dev. std. err. 99.9% C.I.

2 4 200 0.0175 0.003857 0.000273 ± 0.0009

2 14 200 0.0220 0.006167 0.000436 ± 0.0015

2 13 200 0.0239 0.007015 0.000496 ± 0.0017

2 2 200 0.0264 0.005332 0.000377 ± 0.0013

2 1 200 0.0283 0.004529 0.000320 ± 0.0011

2 3 200 0.0302 0.006037 0.000427 ± 0.0014

2 5 200 0.0327 0.008630 0.000610 ± 0.0020

2 6 200 0.0338 0.006561 0.000464 ± 0.0015

2 10 200 0.0372 0.008177 0.000578 ± 0.0019

2 12 200 0.0383 0.008639 0.000611 ± 0.0020
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these rates, the same team of eight cyber analysts as in the previous example in two days

could find the malware from the intrusion in a set of 10,000/0.001 = 10,000,000 files.

The operational result above assumes that the malware detection methods operate

independently of each other. That is, the methods do not use the same information from

the data set in order to make predictions. Dube’s MaTR static method relies on a set of

static features, such as structure anomalies, but a dynamic method like the one analyzed in

this thesis relies on the actual observed behavior of the files. Those information sets arise

from independent analysis methods. Figure 4.6 shows an example of two independent

classifiers attempting to detect malware from an intrusion on a cyber infrastructure. The

outside box represents all the executable files on the network, and the circles for classifiers

A and B show the files that each is able to classify. The dotted line depicts a decision

boundary, and the wavy lines show what each model classifies as malware. The labels

show the relationships between false positives and false negatives. A false positive occurs

when a model classifies a benign sample as malicious, which means that a higher level

must spend extra resources validating that sample. The false positive rate of the MaTR

architecture reveals a measurement of wasted overhead by the malware analysts. A false

negative occurs when a model classifies a malicious sample as benign, which means the

adversary retains the capability of that malicious executable.

The goal for organizing malware triage is to get all the malware within the wavy lines

while pulling the overlap of the classifiers A and B apart as much as possible to reduce

false positives. In practice, most classifiers do not leave many samples unclassified, so the

circles would expand to fill in most of the box.

One exception to independence could be if the static method uses embedded dynamic

link library (DLL) import strings as features, which relates to the possible API calls that

the file could call. However, this behavior analysis feature generation component includes

argument information that is not as available to a static method. In addition, the feature
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Figure 4.6: Venn diagram of independent malware classifiers

generation component considers a sequence of API calls, which would likely not be in

the same order as listed in the imports. Therefore the main limitation on a powerful

synergy between two independent methods in such an architecture is how closely the

models perform with an operational data set rather than the more widely available data

sets that academic studies use.
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4.6 Limitations Analysis

The malware detection system has some limitations. There exist limitations in the

malware set workload, the dynamic analysis method, and feature extraction and selection.

4.6.1 Malware Set Limitations.

This malware set comes from USCERT and Open Malware [25, 30]. The set contains

a wide variety of types of malware, such as worms, downloaders and backdoors, and the

set contains a wide variety of families within each type. Because the set contains a large

number of malware samples, the members collectively exhibit a large number of malicious

behaviors. The fact that the data only exhibit 85 of the possible 120 API calls raises

questions of completeness. While some API calls are not often useful to routine types

of programs, future research should validate that the training set covers enough different

behaviors to be fully useful for training malware detection models. Other studies show

that malware families usually perform similar behaviors, so whichever variants randomly

appear in the training set contribute to the available training information for the learning

algorithm. It is possible that a large malware family randomly present in the training set

could introduce a bias toward detecting that family, however if such a family is more

prevalent in the wild then detecting that family is a desirable trait. Operationally, cyber

defenders should tailor the training set to the types of threats that face the particular

enterprise.

4.6.2 Dynamic Analysis Limitations.

Not all executable files exhibit behavior during dynamic analysis. Several reasons

contribute to this limitation, and this method discards all such samples. First, the operating

system does not execute corrupted files that break operating system conventions. Despite

the malware author’s intentions, no malicious behavior executes in this case.

Second, some executable files require provision of command-line arguments, the

presence of an encryption key, or to read from a configuration file or a DLL. Incident
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response possesses the capability to discover such items and input them into the dynamic

analysis process for newer samples. Then the dynamic analysis process can call malicious

functions of a DLL file. These examples demonstrate the importance of additional domain-

specific information to improve malware detection operationally.

Some malware samples attempt to evade analysis by failing to exhibit malicious

behavior. Such samples evade the method in this study. However, in a growing trend,

many ECIs include virtualized servers and workstations where such samples also fail

to perform malicious behavior. Other malware samples evade analysis by targeting the

dynamic methodology. Lindorfer et al. suggest a mitigation by sending suspicious samples

through a gauntlet of methodologies [18]. There remains the case where malware authors

specifically design an executable file to evade such a defense (e.g. when adversaries

have specific intelligence), and cyber operators must detect this intrusion from a different

perspective (e.g. network traffic anomaly analysis). Moser et al. presents an additional

mitigation with multi-path analysis [20]. This technique exploits instruction trace dynamic

analysis by following both possible paths at every branch. Multi-path analysis suffers from

performance concerns, but exposes more behaviors of an executable file.
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V. Conclusions

This chapter summarizes the research conclusions and significance. Section 5.1 starts

with a summary of conclusions on the research followed by the significance of the

research in Section 5.2. Finally, Section 5.3 offers suggestions for future work on related

subjects. Following this chapter are appendices that provide an additional level of detail

of experimental results. Appendix A shows some of the top results sorted by different

measurements, and Appendix B provides a summary of the results of all 64 experiments.

5.1 Research Conclusions

This research provides insight into the effect of malware instruction set (MIST) level,

q-gram length, and normalization factors on feature selection of behavior reports for

machine learning performance. Including generic argument information with MIST level 2

improves the classification accuracy of a decision tree learner on this data set. Additionally,

the performance of the model should increase operationally with additional benign samples

from the enterprise environment. The normalization factor is not significant with this data

set, and would only significantly improve classification of data sets that include samples

which exhibit a wider variety of different behaviors.

The size of samples available for model training after dropping zero-vectors depends

on the number of unique grams which gram analysis discovers. Therefore, cyber defenders

employing a similar method must include an appropriate number of features for the data

so that the feature vectors represent more samples. Increasing the number of features also

increases the machine learning computational requirements, so operators must choose a

scheme that performs adequately on the available computing resources. This thesis covers

a number of considerations for cyber defenders to prudently design a malware detection
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system, including the following summary. Cyber defenders using a malware detection

system must:

• match the analysis sandbox environment to the enterprise environment as closely as

possible,

• tailor the training set to the types of threats that face the particular enterprise,

• select a set of features that is large enough to represent the number of unique

behaviors that benign and malicious programs perform,

• use an efficient dynamic analysis component depending on the available level of

investment,

• experiment with around eight levels of parameters when retraining,

• keep the number of training validation repetitions less than 10 (e.g. use 3 or 1),

• analyze the independence of the methods in different malware target recognition

(MaTR) tiers, and

• add additional domain-specific information to the model (as possible).

These suggestions are not exhaustive, but they follow from the experiments of this

thesis. Of course, cyber operators should keep up to date on other research in the field to

continue to proactively adapt to changing threats.

5.2 Research Significance

This research contributes to the body of knowledge available to researchers studying

malware detection and operators employing a malware detection system. This study

contributes valuable insight to a hierarchical cyber defense organization, such as Dube’s

MaTR, where a three-tiered malware triage structure funnels a large number of unknown
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executable files up to the human analyst tier [7]. The bottom tier consists of fast malware

detection methods, such as static analysis methods. The bottom tier must not permit a high

false negative rate, but it may admit a moderate false positive rate because the middle tier

should reduce false positives.

The middle tier includes slower methods, such as dynamic analysis, which require

time to emulate or simulate execution. The role of the middle tier is to decrease the number

of false positives to send to the top tier, so the detection methods must be independent

to those in the bottom tier. If the methods in the middle are not independent, then they

would produce nearly the same results on the same input. However, an independent

method produces different results such that the predictions of both methods cover the same

malware (according to accuracy), but cover different false positives. Automatic behavior

analysis is independent to static n-gram analysis because behavior analysis directly detects

the malicious behavior rather than arbitrary byte strings.

Following is a summary of contributions of this thesis:

• critical analysis of recent automatic malware analysis research including a compari-

son to this study (Sections 2.3.2 and 2.4),

• analysis and discussion of results from 64 experiments on 3 key parameters of

behavior analysis feature generation that the literature does not cover in a detailed

manner (Chapter 4), and

• analysis of the contribution to a malware target recognition architecture by this

dynamic analysis method, which establishes the feasibility of automatic behavior

analysis at the enterprise scale (Sections 4.5 and 5.2).

As Section 4.4 discusses, if an enterprise accomplishes this analysis method in

addition to a method with similar performance to Dube’s static method with a baseline

of their approved software along with a set of malware that includes current threats, then
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they can have functioning static and dynamic detection models within two business days

after constructing the system and gathering the training samples. Such a malware target

recognition (MaTR) can change the game of malware triage in favor of cyber defenders at

enterprise cyber infrastructures (ECIs) in government, business and academia.

5.3 Future Work Recommendations

The following subsections describe considerations for future malware analysis

researchers who investigate automatic behavior analysis starting with data set issues in

Section 5.3.1. Next, Section 5.3.2 discusses additional machine learning algorithms, and

lastly Section 5.3.3 addresses feature selection.

5.3.1 Data Set Issues.

The data set proves extremely important to a machine learning scheme. In order

to ensure that the trained model learns information regarding current malware behavior,

the input data set malware must remain current. Theoretically, by including all malicious

behaviors the behavior model includes all relevant information, and the model detects all

germane malware.

Every application that exists on a given ECI contains executable files. Each additional

behavior that contributes to a behavior model increases the ability of a model to correctly

classify an executable file that exhibits similar behavior. Cyber defenders must identify

applications present on a specific ECI and include representative executable files to enable

appropriate model training. This methodology uses 32-bit Windows XP SP3 virtual guests,

and includes operating system files from Windows 2000 to Windows 7. A current limitation

of the Cuckoo Sandbox configuration pushes the ability to operate 64-bit guests outside

the scope of this research, but the Cuckoo Sandbox developer intend to provide 64-bit

capability in the future. In an operational environment, cyber defenders implementing this

method must match the sandbox environment to the enterprise environment as closely as

possible. Any differences between the tests and the operational workstations could mean
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that executable files behave differently, which could increase the chances of missing a

malware sample in the wild.

The malware comes from a source that includes a wide variety of malware. Additional

work to identify original sources of malware samples enables more accurate labeling and

more specific classification training. Researchers could use method similar to this to

attempt to categorically identify generic malicious behaviors that provide insight to the

unique malicious behaviors that exist in the wild. This would enable building very accurate

and efficient models.

5.3.2 Machine Learning Algorithms.

Different machine learning algorithms produce different types of models. Certain

algorithmic heuristics discover the ideal information from the input data [33]. On the other

hand, discovering a better performing learning algorithm for a given data set requires a

substantial research effort. Decision trees are sufficient to classify whiteware and malware

relative to a data set. Ensemble learning methods prove effective to improve adequate-

performing learning algorithms [17]. Again, pilot studies for this research show that

decision trees perform better than bagging or boosting decision stumps and similarly to

bagging or boosting decision trees. Ensembles of decision stumps train more quickly than

decision trees, but decision trees train faster than ensembles of decision trees because each

ensemble trains 10 models internally. Future work could investigate ensembles of smaller

decision trees than normal, but not as small as decision stumps, which just have one level.

Algorithms such as support vector machine (SVM) and perceptrons find applications

in other fields, but decision trees attain high accuracy in malware classification without the

need for the high computational cost of other robust algorithms.

5.3.3 Feature Selection.

The scope of these experiments covers 500 features according to information gain.

While this number covers the useful distinctions between malware and non-malware with
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some probability, attaining higher probability requires additional features. Some samples

do not exhibit any behavior that scores as high an information gain as the feature selection

set. Then the feature vector for such a sample contains all zeros. This method discards

such samples, so any behavior that the sample exhibits does not contribute to the detection

model. Increasing the number of features decreases the number of thusly unrepresented

samples. This decrease demonstrates a bias of the feature selection method for behaviors

that a larger number of samples exhibit along classification lines. In this case, multiple

behaviors that correctly correspond to classes identity the same group of samples, but a

smaller group of samples does not contribute as highly.

Future study should investigate alternate feature selection schemes and parameters.

Using principal component analysis could be a different way to rank the dimensions from

the generated feature set. A differently-sized feature selection set could affect classifier

performance. For example, including more than 500 features provides more information to

the learning model. However, more input features requires more computational resources

to build the model. One approach could be to select a varied number of features based on

the number of q-grams that exist in the behavior reports.

However, this study shows that machine learning algorithms can learn an accurate

model when the number of features is small compared to the number of possible features.
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Appendix A: Top 10 Performance Results

Table A.1: Top 10 Data Sets by Classifier Performance according to the Area under ROC

(AUC) at the 99.9% confidence interval (C.I.)

MIST q N AUC std. dev. std. err. 99.9% C.I.

2 13 200 0.998137 0.001189 0.000084 ± 0.000281

2 14 200 0.997943 0.001055 0.000075 ± 0.000249

2 12 200 0.997883 0.001054 0.000075 ± 0.000249

2 11 200 0.997817 0.001072 0.000076 ± 0.000253

2 6 200 0.996767 0.001179 0.000083 ± 0.000278

2 10 200 0.995889 0.003728 0.000264 ± 0.000881

2 1 200 0.995805 0.003423 0.000242 ± 0.000809

2 5 200 0.992861 0.003221 0.000228 ± 0.000761

2 4 200 0.992662 0.002849 0.000201 ± 0.000673

2 8 200 0.992503 0.006521 0.000461 ± 0.001540
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Table A.2: Top 10 Data Sets by Classifier Performance according to the Percent Correct at

the 99.9% confidence interval (C.I.)

MIST q N % correct std. dev. std. err. 99.9% C.I.

2 13 200 99.3819 0.131649 0.009309 ± 0.0311

2 14 200 99.3696 0.120930 0.008551 ± 0.0286

2 10 200 99.3255 0.120874 0.008547 ± 0.0285

2 4 200 99.2708 0.110091 0.007785 ± 0.0260

2 8 200 99.2180 0.142474 0.010074 ± 0.0336

2 2 200 99.1946 0.114426 0.008091 ± 0.0270

2 9 200 99.1835 0.127091 0.008987 ± 0.0300

2 12 200 99.1808 0.151388 0.010705 ± 0.0358

2 11 200 99.1552 0.167846 0.011868 ± 0.0396

2 7 200 99.1536 0.144591 0.010224 ± 0.0341
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Table A.3: Significance of MIST Level by Factor Levels, sorted ascending by AUC of

MIST level 1 from left to right then top to bottom

q norm MIST level 1 2 q norm MIST level 1 2

1 full 97.7033 99.0775 ◦ 1 norm 97.7273 99.0997 ◦

6 full 97.8300 99.0102 ◦ 5 full 97.8723 99.0265 ◦

2 full 97.8810 99.1275 ◦ 3 full 97.8850 98.8098 ◦

2 norm 97.9027 99.2616 ◦ 5 norm 97.9083 99.1942 ◦

6 norm 97.9093 99.1538 ◦ 7 full 97.9387 99.0953 ◦

3 norm 97.9478 98.9784 ◦ 14 full 97.9734 99.3966 ◦

4 full 97.9979 99.2236 ◦ 8 full 98.0128 99.1727 ◦

7 norm 98.0345 99.2119 ◦ 9 full 98.0430 99.1759 ◦

4 norm 98.0480 99.3179 ◦ 13 full 98.0738 99.3832 ◦

14 norm 98.0757 99.3427 ◦ 12 full 98.0785 99.1723 ◦

11 full 98.1033 99.1149 ◦ 10 full 98.1209 99.3015 ◦

13 norm 98.1301 99.3807 ◦ 12 norm 98.1346 99.1893 ◦

8 norm 98.1516 99.2634 ◦ 11 norm 98.1671 99.1956 ◦

9 norm 98.1979 99.1910 ◦ 10 norm 98.2148 99.3495 ◦

15 full 98.9178 99.0332 16 full 98.9530 98.9768

15 norm 99.0416 99.0569 16 norm 99.1217 98.9485

◦ statistically significant improvement, 0.001 significance
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Table A.4: Significance of Normalization by Factor Levels, sorted ascending by AUC of

Non-norm from left to right then top to bottom

MIST level q Non-norm Normalized MIST level q Non-norm Normalized

1 1 97.7033 97.7273 1 6 97.8300 97.9093

1 5 97.8723 97.9083 1 2 97.8810 97.9027

1 3 97.8850 97.9478 1 7 97.9387 98.0345

1 14 97.9734 98.0757 ◦ 1 4 97.9979 98.0480

1 8 98.0128 98.1516 ◦ 1 9 98.0430 98.1979 ◦

1 13 98.0738 98.1301 1 12 98.0785 98.1346

1 11 98.1033 98.1671 1 10 98.1209 98.2148

2 3 98.8098 98.9784 ◦ 1 15 98.9178 99.0416

1 16 98.9530 99.1217 ◦ 2 16 98.9768 98.9485

2 6 99.0102 99.1538 ◦ 2 5 99.0265 99.1942 ◦

2 15 99.0332 99.0569 2 1 99.0775 99.0997

2 7 99.0953 99.2119 ◦ 2 11 99.1149 99.1956

2 2 99.1275 99.2616 ◦ 2 12 99.1723 99.1893

2 8 99.1727 99.2634 2 9 99.1759 99.1910

2 4 99.2236 99.3179 ◦ 2 10 99.3015 99.3495

2 13 99.3832 99.3807 2 14 99.3966 99.3427

◦ statistically significant improvement, 0.001 significance
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Appendix B: Experiment Result Details

This appendix includes the detailed results from the 64 experiments. The following

list contains the definitions of the column headings in each of the four tables:

• norm – normalization

• q – gram length

• l – malware instruction set (MIST) level

• #tng – number of training samples

• #test – number of testing samples

• %acc – percent correct

• AUC – area under the receiver operating characteristic (ROC) curve

• FPR – false positive rate

• FNR – false negative rate

• TP – number of true positives

• FP – number of false positives

• TN – number of true negatives

• FN – number of false negatives

• tng (s) – user CPU time training (seconds)

• test (s) – user CPU time testing (seconds)

• size (b) – serialized model size (bytes)
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